

Uni-compartment knee arthroplasty (UKA)

Implant position & soft tissue balancing during robotic assisted UKA

Dr M Y Hassan

Orthopaedic Surgeon & Sports Physician MBChB (UCT) MPHIL Sports Med (UCT) FC Orth (SA)

Introduction

- Malalignment of the knee joint is important in the etiology of knee OA¹
- Realignment osteotomies around the knee reduce force/area² in the affected early degenerative compartment, facilitating return to functional activity levels²

Introduction

- Knee arthroplasty principles include restoration of knee alignment, range of motion with pain relief in a well balanced knee
- Malalignment during UKA can predispose to implant aseptic loosening (>2mm difference between implant & contralateral space, ³) or an increase risk of contralateral compartment OA³
- Traditional methods of soft tissue balance testing: spacers &/or tensioners
- Creating a block shaped femur, soft tissue balance is assessed in extension and flexion
- Mid-flexion instability testing is done at 30°-60° knee flexion

Traditional gap testing in extension

Traditional gap testing in flexion

Introduction

Computer assisted navigation allow soft tissue balancing assessment throughout ROM

- Assessment before bone resection
- A systematic approach to data registration and gap balancing will expedite surgery planning

Anatomic considerations for medial & lateral UKA

Slope comparison between medial and lateral tibial condyles

Medial, lateral & coronal slopes of the tibial plateau for male & female subjects. SD standard deviation ³

	Sagittal Tibial SI	оре	Coronal tibial
	Medial tibial slope	Lateral tbial slope	slope
Female (n=33)			
Mean	5.9°	7.0°	2.5°
SD	3.0°	3.1°	1.9
Male (n=22)			
Mean	3.7°	5.4°	3.5°
SD	3.1°	2.8°	1.9°
р	0.01	0.02	0.03

Female 7.0 Male 5.4°

Lateral tibial slope of left knee

Lateral collateral ligament posterolateral structures

Right knee: Popliteus posterior view

Right knee Popliteus lateral view

Medial collateral ligament posteromedial structures

Right knee: MCL Medial collateral ligament, POL posterior oblique ligament

Implant selection during robotic assisted UKA

Smith & Nephew Journey UKA

Implant selection and its biomechanics:

Implant shape: specs of implant

Anterior mesial lugs

Tibial tray dimensions(mm)

	7	8	9	10	11	12*	14*
Modular							
All-Poly							

Femoral component dimensions (mm)

Size	AP.	HT	ML	DM	PM
1	40	31	19	5.5	5.5
2	43	32	20	5.5	5.5
3	46	34	21	6.5	6.5
4	49	36	22	6.5	6.5
<u>\$ </u>	52	38	23	6.5	6.5
6	55	40	24	6.5	6.5
71	58	42	25	6.5	6.5

Smith & Nephew Journey UKA

Implant default position

After alignment

Assessing alignment

Femur:

- Z axis perpendicular to distal femur cut
- Implant 45° flexion

Tibia

Mechanical femur axis 5° slope 0 9mm depth resection Ο 45° 90° Distal femur cut Tibia AP axis 5°

Smith & Nephew Journey UKA

Robotic Uni knee replacement: Setup technique

Register: Mechanical axis Knee ROM Femur & tibia mapping

Plan prosthesis position Assess gap balance Bone resection Insert prosthesis

Soft tissue balance capturing

Mapping of components

Mapping of components Impact on soft tissue balancing

During mapping of femur assess the geographic wear pattern

• Cross correlate this pattern to implant: implant variance during mapping

Mapping of tibia component Impact on soft tissue balancing

During mapping of tibia assess the geographic wear pattern

Cross correlate this pattern to implant: implant variance during mapping

Mapping of components 1st step: Systematic approach to soft tissue balancing

Femur default position

- Femur mid axis in sagittal plane
- Femur position: tidemark as anterior reference point (constant), ensure no notching
- Correlate wear pattern (implant variance) to potential overlapping of implant
- Rotation: sagittal plane, also coronal plane

Tibia

Rotational alignment Size tibia Slope Resection depth

After completing initial mapping and implant position: proceed to assess gap balance

Balancing the gap mismatch

Uniform

Good flexion and good extension

Soft tissue balancing uniform

Soft tissue balancing uniform

		Component S Flexion +45°
Flexion	Extension	
Good	Good	P
Proceed with implant bone rese	ection	

Uniform

Loose flexion and loose extension

Soft tissue balancing uniform

Soft tissue balancing uniform

	5 +	Pr	0° V	rus / P	ost: 6	[°] Varu	s)	Flexion +32°	
GAP	-4 - <mark>№</mark> -3 -				o				
	1	10 IC	ĩ		ĩ				
AP	-1 +	e. 10	30		60		90		
OVERI	-3 +								
0	-5				FLEXIO	N (degi	rees)		

Flexion	Extension		
Loose	Loose		
Move tibial component superiorly and/or increase thickness			

Uniform

Tight flexion and tight extension

Soft tissue balancing uniform

Soft tissue balancing uniform

Flexion	Extension
Tight	Tight
Move tibial component inferior	and/or reduce thickness

Asymmetric pattern

Good extension and tight flexion

		Component S Flexion +45°
Extension	Flexion	
Good	Tight	
Move femur component anterio And/or increase tibia slope but s inferior	or ≤ 7° and move tibial component	

Asymmetric pattern

Good extension and loose flexion

Flexion gap may be 1-2mm looser in flexion than extension. If definitely looser in flexion then resect less posterior femur condyle by putting a spacer in between the posterior paddle of the 2-in-1 cutting block thereby resecting less bone from the posterior femur condyle.

Extension		Component S Flexion +45°
	Flexion	
Good	Loose	
Move femoral component posterior Or reduce femoral component flexior	1	
		Effect of changing arc radius

Asymmetric pattern

Good flexion and loose extension

Extension	Flexion	Component S Flexion +45°
Loose	Normal	
Move femoral component infer Or increase femoral component	iorly flexion	P

Asymmetric pattern

Tight flexion and loose extension

Asymmetric: Loose extension	Asymmetric: Tight flexion			
Extension	Flexion			
Loose	Tight			
Resect less distal femur with 4.5mm block. Remove 1-2mm cartilage from posterior femur condyle. Assess tibia slope & consider increasing slope angle resection.				

Asymmetric pattern

Normal flexion and tight extension

Asymmetric pattern

Tight extension and loose flexion

Flexion gap may be 1-2mm looser in flexion than extension. If definitely looser in flexion then resect less posterior femur condyle by putting a spacer in between the posterior paddle of the 2-in-1 cutting block.

Summary

- Robotic assisted UKA allows intraoperative soft tissue assessment and appropriate balancing throughout knee ROM
- Real time, intraoperative patient specific anatomical template is created
- Implant position and sizing is template on the native patients anatomy
- Gap balance is assessed before bone resection
- After resection outcome confirmation of the soft tissue balance
- A stepwise, systematic approach to balancing the soft tissue envelop will aid the surgeons planning using this technology

References

- 1. Alignment and osteoarthritis of the knee. Hunter D.J, Sharma L, Skaife T. J Bone Joint Surg Am. 2009; 91 Suppl 1 :85-89.
- 2. High rates of return to sports activities and work after osteotomies around the knee: a systematic review and meta-analysis. Hoorntje A, Witjes S, Kuijer PP, Koenraadt KL, Van Geenen RC, Daams JG, Getgood A, Kerkhoffs GM. Sports Med 2017 April 11.
- 3. Medial unicompartmental knee arthroplasty: does tibial component position influence clinical outcomes and arthroplasty survival? Chatellard R, Sauleau V, Colmar M, et al., Societe d'Orthopedie et Traumatologie de IO. Orthop Traumatol Surg Res 2013; 99(4 Suppl): S219.
- The geometry of the tibial plateau and its influence on the biomechanics of the tibiofemoral joint. Hashemi R.C, Chandrashekar N, Gill B, Beynnon B.D, Slauterbeck J.R, Schutt R.C, Mansouri H, Dabezies E. J Bone Joint Surg Am. 2008 Dec; 90(12): 2724-34.